| SITE: GE | R | me | | |----------|-----|----|--| | BREAK: | 10. | 6 | | | OTHER:V | 1.8 | | | ## U.S. FISH AND WILDLIFE SERVICE P.O. Drawer 1190 Daphne, Alabama 36526 Phone: (251) 441-5181 Fax: (251) 441-6222 **To:** Carolyn Thompson, EPA (404-562-8896) Date: 10/25/02 Pam Scully, EPA (404-562-8896) Time: Holly Deal, SOL-DOI (404-730-2682) Fax: Trish Hamilton, SOL-DOI (404-730-2682) Keith Hastie, FWS (706-613-6059) Diane Beeman, FWS (404-679-7081) Susan Finger, USGS-BRD (573-876-1896) Chris Ingersol, USGS-BRD (573-876-1896) From: Peter Tuttle FWS, Daphne Subject: Coosa River PCBs Pages (including transmittal sheet): 8 #### Comments: materials for Monday's conference call - 1) excerpts from Solutia's off-site RCRA report (5 p.) - 2) AL fish advisories (1 p.) - 3) map of Coosa (1 p.) | | | | • | | | | |------------|-----------|---------------------|-----------------------|---------------|--------------|------------------| | 10/24/02 | THU 17:57 | FAX 4047302682 | DOI SOL | wee enticites | | 2002
2002/005 | | 10/23/2002 | WED 16:04 | PAI 251 441 6222 US | FISH AND WILDLIFE +++ | KEG SOLICITOR | ∕ ^ . | | | SITE: | 11.4 | | |--------|------|---| | BREAK: | 16.0 | · | | OTHER: | 6 | | generated by HEC-RAS. Geographic information system (GIS) software was used to identify the intersection of the ground surface and the computed water surface elevation. Inconsistencies between the DEMs and the FEMA-based ground elevation data used in the HEC-RAS model required that a different approach be taken for the Snow Creek floodplain maps. These maps were developed using the floodplain width computed by HEC-RAS. CAD and GIS software were used to generate plots of the floodplains based on the computed floodplain width. ## 4.7.3 Uncertainty Analysis The Snow Creek and Choseolocco Creek floodplain maps are based on a variety of data, including both field data obtained during this investigation and previous studies. Data used as input to the analysis were verified wherever possible. Map production techniques were chosen so as to minimize the inconsistencies between different data sources. However, the maps are based on various data sources and the modeling includes estimates of both current and historical conditions. Furthermore, data for calibration of flow conditions in Snow Creek were not available. Thus, the floodplain maps should be used for guidance in defining flood plain limits and not taken to show the precise extent of flooding. #### 4.8 Conclusions Based on the results of the surface water sampling, the following conclusions can be made: - TSS and PCB transport in Snow Creek and Choccolocco Creek are extremely responsive to high-flow events, with a majority of annual transport occurring during relatively few, short-lived, high-flow events. Conversely, Lake Logan Martin exhibits a more tempered relationship between PCB and TSS transport and flow, which is consistent between the three lake sampling locations. - Choccolosco Creek does not appear to substantially increase the net mass of TSS and particulate-phase PCB transported through Lake Logan Martin. A significant increase in TSS concentration and load occurs between Neely Henry Dam and the Route 20 bridge, upstream of Choccolocco Creek. - On an annual basis, estimated particulate-phase PCB being transported over Neely Henry Dam exceeds particulate-phase PCB contributed to Lake Logan Martin from Choccolocco Creek under base-flow was brong persons per joads creek upstream and down upstream and down weint contributions was longer Martin weint after a RAS in water longer martin conditions. Solids and particulate-phase PCB loads from Snow Creek are negligible compared to solids and particulate-phase PCB loads in Lake Logan Martin, both downstream and upstream of Choccolocco Creek. and contributions from Choccolocco Creek do not appear to result in an increase of loads as measured from upstream and downstream of the creck mouth. ## 5.2 Fish Investigation Results The results of the fish investigation are presented in this section and include the adult bass and catfish sample results, the results of the YOY samples, and a discussion of the data validation conducted on the laboratory results of fish analyses. A comparison of the data collected during this investigation with the results of the 1996 sampling conducted by Bayne (Bayne, 1997b) is also included in this section. The results of the surface sediment samples collected at the seven fish sample locations are discussed in Section 3.12. ## 5.2.1 Lake Neely Henry and Lake Logan Martin The results of the individual adult bass and eathsh samples for the sampling locations in Lake Neely Henry (Station 30) and Lake Logan Martin (Stations 33, 38, and 39) are presented in Table 5-2. This table includes the sample location, type (fillet or whole body), species collected, length, weight, sex, lipid content, and the results of the PCB and mercury analyses (where applicable). As noted above, the sampling station in the lower reaches of Lake Neely Henry is just upstream of the Neely Henry Dam. The average concentration of PCBs in adult bass for the three Lake Logan Martin sampling locations ranged from 0.41 mg/kg at Station 39 to 1.1 mg/kg at Station 33. In each case, the average PCB concentration was less than the ADPH advisory level of 2 mg/kg. The results of the adult cattish samples for the three Lake Logan Martin sampling locations were similar, with average PCB concentrations ranging from 0.51 mg/kg at Station 39 to 0.94 mg/kg at Station 33. These average concentrations were also less than the ADPH advisory level of 2 mg/kg. The results of bass and catish sampling conducted in Lake Neely Henry also demonstrated that PCBs are present in the fish upstream of Lake Logan Martin. Although, measured PCB concentrations in fish from Lake Neely Henry were below the ADPH advisory level of 2 mg/kg, their consistent presence documents both background levels of PCBs in fish on a regional basis, and the likely transport of PCBs into Lake Logan from upstream sources. #### 5.2.2 Choccolocco Creek The results of the individual adult bass and eatlish samples from Choccolocco Creek locations (ADEM 96, New 99, and Station 35) are also presented in Table 5-2. The PCB concentrations measured in the fish from these three locations ranged from a channel catfish with 0.20 mg/kg at Station 35 to a channel catfish with 34 mg/kg at ADEM 96. ._@<u>00</u>5 Table 4-1 Sciulia Inc. Annieton, Alabama Off-Site RFI Report # Surface Water Dale Summery | ocalor. | | | 標準 | | | | Total PCB | Patricitate Phiese
Water PCB (Up/E) | Decd, EST, | Perlicidate:
PCB Coad | PCB Load | Page Flow PCB Load (hplyear); | Average Excluding | |-----------|---|--------------|--------------|-----------------|----------------|-----------|--------------|--|----------------|--------------------------|----------|-------------------------------|-------------------| | SQ11UASS) | | Base | ST MY | March 24 | 0696 | 26 | 0.32 | 0.0083 | 850,156 | ` 0.1B | 64 | 17,75 | 2.26 | | • | Upstream | | 4 | May 3-4 | 5466.5 | 26 | <u>Θ1Ω</u> Ο | 0.00039 | 267,482 | | 1.9 | | | | | | | 5 | May 20-27 | 5901 | . (6 | 0.022 | 0.00039 | 259,688 | 0.0058 | | | | | | | | 7 | September 27-28 | 4094.5 | 28 | 0.028 | 0.0008 | 298,619 | O.0078 | 2.0 | | | | | water and a second to the second and control of | | 6_ | January 20 | | 16 | O.D50 | 0.00079 |) · · · ò | 0.00 | 0.00 | | | | 8 | Logan Martin | Base | 1 | March 22-23 · | 9166 | | 0.67 | 0.0067 | 297,887 | , 0.20 | 73 | 17.33 | 3.46 | | | Downstream | 1 | 4 | May 3-4 | 6518 | 29 | 0.032 | 0.00092 | 462,452 | D.015 | 5.4 | | | | | , | | 5 | Hay 28-27 | 6221
5926 | 72 | 0.033 | 0.00073 | 334,B40 | 0.011 | 4.1 | | | | | | | 6 | June 14 | | | 0.045 | 0.D0945 | 144,883 | 0.0065 | 2.4 | l ' " | | | | | | 7 | September 27-28 | 4350 | | 0.024 | 0.09053 | | | | | | | | | | 8 | January 20 | | 10 | 0.080 | 0,00 | . 0 | 0,00 | 0.00 | | | | 7 | Eastaboga Creek | 8220 | 1. | March 22-23 | 37 | 2.5 | | | 226 | | | 1 | | | | | | 4 | May 3-4 | 18.16 | | | | 1,333
337 | | | 1 | 1 1 | | | | | 5 | May 28-27 | 11.48 | 12 | | i | | | | | ì | | | | | 6 | June 14 | 11.37 | 18 | | | 362 | | | 1 | 1 | | | | | _ لِدا | September 27-28 | 5.24 | 20 | | | 266 | | | | | | | | | | January 19 | 67_93 | | | | 416 | | | | | | | | High | _2_ | April 1 | 74.57 | | | | 4,561 | | | | | | 6 | Cheaha Creek | Base | [] | March 22-23 | 108.61 | 2.5 | | | 1,141 | .] | | | 1 | | | | | <u> 4</u> _ | May 3-4 | 67.34 | <u>24</u> | | | 6,126 | | | 1 . | <u>}</u> | | | ! | | 5 | May 28-27 | B1.3 | 2.5 | | | 497 | | | | | | | | ľ | <u>5</u> | Jime 14 | 68.22 | | | | ; ! |] <i></i> | { | 1 |] . | | | 1 | 1 - 1 | - <u>-</u> - | September 27-28 | 36.54 | 2.5 | | | 223 | | | . | } | | | [| Alleh . | ┝╌╬╾ | January 19 | 7.9
259.8 | | <u> </u> | | 48 | | | | | | | | Migh | | April 1 | | | | | 18,419 | | | · | | | | Snow Grack |) | - | June 21 | - 0,02
1.23 | 66 | 12
0.87 | 0.77 | 3.23 | | | | ì | | | | | | June (21 | 1.23 | 12 | 0.87 | 0.045 | 156.5 | 8.00014 | 0.649 | <u> </u> | <u> </u> | Anniston PCB Site - GE Rome Site Conference Call - 10/28/02, 10:00 EST ## Call Purposes - 1) introduce the staff and discuss the status of Anniston PCB and GE Rome Sites (CERCLA and NRDAR) - 2) discuss long-term plans for both sites under NRDAR - 3) identify determine the issues to be discussed in a follow-up meeting and schedule that meeting #### **AGENDA** - I) Introductions - A) Call participants - B) Review of meeting purposes - II) NRDAR Responsibilities and Status **USFWS** - A) General - B) Anniston - C) GE Rome - III) Regulatory Status of Sites **EPA** - A) Anniston - B) GE Rome - IV) Preliminary discussion of extent of the contamination - A) Affected areas **USFWS** -Overlap of Sites V) Next Steps - Meeting in November ## Alabama Fish Consumption Advisories ____April 2002____ | | | | April 2002 | | | |--|---|---|---|------------------------|-------------------------------------| | Water Redy | County | Species | Portion | Pollutani | Type Advisory | | Buy Minette
Creak | Baldwin | Largemouth bass | Emire ಭಾತಿk | Mercury* | No Consumption 1 | | Chickasew
Creek | Mobila | Largemouth base | Entire creek | Mercury ^a | No Consumption 1 | | Choccolocco
Creek | Calhoun
Talladega | All Species | Entire length of Creek from South of Oxford, downstream to where Chocoacoo Creek flows into Logan Nyrin Lake | PCB# ³ | No Consumption ¹ | | Cold Creek
Swamp | Mobile | All Species | From combiance of Cold Creek with the
Mobile River west through the Swamp | . Mercury* | No Consumption 1 | | Goosa River | Cherokoa | Catiah
over 1 pound | Georgia state fine &
Weisa Dam | PCBs ³ | Limited
Consumption ² | | Coosa River | Calhoun
SI Clair
Tailadoga | Carrien
over 1 pound | Belween Neely Henry Dam
& Riverside, AL | PCBs | Limited
Consumption 2 | | Coosa River | SI. Cipir
Talladega | Striped bass, callish over 1 pound, Crappie | Between Riverside and Vincent, including
the Logan Manin Reservoir | PC8s ³ | No Consumption 1. | | Coosa River | St. Cinir
Shelby
Telledega | Spotted or stripped base,
Callish over 1 pound,
Creople | Emween Logan Martin Dum & the
railroad tracks crossing the Coosa
River near Vincent, AL | РСВв ³ | No Consumption 1 | | Cossa River | Chillen
Coosa
Sheiby
St Clair
Talladens | Striped boos,
Crappie,
Blue Catlian,
Spotted base | Belween Logan
Martin Dom & Lay Dam | PCBs ³ | No Consumplion ' | | Caosa River | St. Ciair | Spotted bass | In upper Lay Reservoir approximately two
miles downstroam of Logan Martin Dam
and one half mile downstroam from the
Kelly Creek - Coosa River confluence in
the vicinity of Ratating illot Island | PCBs ³ | Limited
Consumption ² | | Coosa River | Elowah | Channel culfish | In the Croff Ferry area of Neely Hanry
Reservoir (Alabama Power Reservoir Mile
54) | PCB ² | No Consumption 1 | | Encelawpa
River | Mobile | Largemouth Bass
Spotted Bass | Entire River | Mercury | No Consumption | | Flah River | Baldwin | Largemouth bass | Enlire river | Mercury ⁴ | No Consumption 1 | | Fowl River | Mobile | Largomoulli bass | Entire rives | Mercury* | No Consumption 1 | | Gulf Coast | Boldwin
Mobile | King Mackerel
over 39 inches | Entire coast | Marcury | No Consumption 1 | | Gull Coast | Balwin
Mobile | King Mackeros
under 39 inches | Euline coast | Morcury* | Limited
Consumption ² | | Huntsville
Spring
Branch &
Indian Cress | Madison | Small moully buffalo,
Digmouth buffalo | From Redstone Assertif to the Tannessee Rivor | ⁷ דמם | No Consumption | | Mobile River | Mobile | Largemouth bass | At and South of the Confluence of Cold
Creek | Mercury ⁴ | Limited
Consumption 2 | | Styx River | Baldwin | Largemouth Bass | Entire River | Mercury | No Consumption | | Styx Rivor | Baldwin | Channel Cellish | Entire River | Mercury | Limited
Consumption | | Tensow River | Beldwin | Largemouth Bass | Entire river | Mercury | Limited
Consumplinn | | Three Mile
Creek | Mobile | Allantic croaker | Downstream of relificad fresile down to one mile upstream of confluence with Mobile River | Chlordane ³ | No Consumption | | Three Mila
Creek | Mab-le | Striped sacs,
Speckled trout | Downstream of railroad treatle down to one
mile upstream of confuence with Mobile
River | Calordanc.4 | Limiled
Consumption 2 | | | Washington | Largemouth base, | Ohn Gusin at River mile 60 5 | Mercury* | No Contampton |